Neural network approach for robust and fast calculation of physical processes in numerical environmental models: Compound parameterization with a quality control of larger errors

نویسندگان

  • Vladimir M. Krasnopolsky
  • Michael S. Fox-Rabinovitz
  • Hendrik L. Tolman
  • Alexei A. Belochitski
چکیده

Development of neural network (NN) emulations for fast calculations of physical processes in numerical climate and weather prediction models depends significantly on our ability to generate a representative training set. Owing to the high dimensionality of the NN input vector which is of the order of several hundreds or more, it is rather difficult to cover the entire domain, especially its "far corners" associated with rare events, even when we use model simulated data for the NN training. Moreover the domain may evolve (e.g., due to climate change). In this situation the emulating NN may be forced to extrapolate beyond its generalization ability and may lead to larger errors in NN outputs. A new technique, a compound parameterization, has been developed to address this problem and to make the NN emulation approach more suitable for long-term climate prediction and climate change projections and other numerical modeling applications. Two different designs of the compound parameterization are presented and discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an in-cylinder processes model of a CVVT gasoline engine using artificial neural network

Today, employing model based design approach in powertrain development is being paid more attention. Precise, meanwhile fast to run models are required for applying model based techniques in powertrain control design and engine calibration. In this paper, an in-cylinder process model of a CVVT gasoline engine is developed to be employed in extended mean valve control oriented model and also mod...

متن کامل

An artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes

One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

Coordinated Control of a Tractor-Trailer and a Combine Harvester by Neural Adaptive Robust Control

In this paper, the coordinated control problem of a tractor-trailer and a combine harvester is taken into account in the presence of model uncertainties by using the leader-following approach to track a reference trajectory for the first time. At first, a second-order leader-follower dynamic model is developed in Euler-Lagrange form which preserves all structural properties of the dynamic model...

متن کامل

Prediction of the waste stabilization pond performance using linear multiple regression and multi-layer perceptron neural network: a case study of Birjand, Iran

Background: Data mining (DM) is an approach used in extracting valuable information from environmental processes. This research depicts a DM approach used in extracting some information from influent and effluent wastewater characteristic data of a waste stabilization pond (WSP) in Birjand, a city in Eastern Iran. Methods: Multiple regression (MR) and neural network (NN) models were examined u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 21 2-3  شماره 

صفحات  -

تاریخ انتشار 2008